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J.  Phys. A: Math. Gen. 23 (1990) 5577-5599. Printed in the UK 

Asymptotic corrections to the Wigner semicircular eigenvalue 
spectrum of a large real symmetric random matrix using the 
replica method 

Gurjeet S Dhesi? and Raymund C Jones 
School of Mathematics and Statistics, University of Birmingham, Birmingham B15 2 l T ,  U K  

Received 9 March 1990 

Abstract. The replica method has previously been used to calculate the semicircular 
averaged eigenvalue spectrum of the Gaussian orthogonal ensemble of real symmetric 
N x N random matrices in the limit where N + CC. In this paper we develop a perturbative 
scheme which, within this same replica framework, is used to calculate the corrections 
within this semicircular band of eigenvalues to order 1/ N and 1/ N2. Comparison is made 
between these results and previously published work by other authors on the corrections 
to order 1/ N. A new and straightforward self-consistency argument is presented and used 
to derive the shape of the averaged eigenvalue spectrum when N is large but finite and 
the scaling behaviour of this averaged eigenvalue spectrum near the band edges is demon- 
strated in a straightforward fashion. Some comments are made on the relation of our  results 
to those of field theoretical calculations in zero dimensions. 

1. Introduction 

In recent years there has been a revival of interest in problems associated with random 
matrices and  their applications in physics. Seminal work was done by Dyson (1962) 
who pointed out that in studying the highly excited states of large nuclei it would be 
more profitable to study the statistical properties of such spectra rather than attempt 
a detailed ab initio calculation on a complex system. In such a problem one has readily 
available only global information on the symmetry of the underlying Hamiltonian 
which, because of the large number of particles involved, could be represented as a 
large square matrix (either symmetric or Hermitian). In the absence of other information 
one then proceeds rather as in statistical mechanics and  constructs a statistical ensemble 
of such matrices subject to the requirement that each member of the ensemble obeys 
some physically useful symmetry requirement. For this reason much attention has 
focused on the Gaussian orthogonal ensemble (GOE)  of N x N real symmetric matrices 
which is invariant under orthogor.al transformations. This latter invariance leads to a 
description of a typical member of the ensemble as a real symmetric N x N matrix in 
which each element is a normally distributed random variable with mean zero. It was 
shown by Wigner (e.g. 1958) that the ensemble averaged eigenvalue density p ( A )  (for 
which p(A) dA gives the average number of eigenvalues between A and h + d h )  is a 
semicircle whose radius, as N + a, is proportional to the standard deviation associated 
with a matrix element of an  individual member of the ensemble. A useful compendium 
of early results and  papers in this area is to be found in the reprint collection edited 
by Porter (1965) and in the book by Mehta (1967) whiich has become a standard text 
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on important calculations and ideas in  random matrix physics. There is a more recent 
and exhaustive review of work in this area by Brody et al (1981). 

Use of random matrix ensembles has now found a firm place in areas outside 
nuclear physics. They have been used in condensed matter physics to describe problems 
associated with certain models of spin glasses by Kosterlitz et al (1976) and more 
recently in the description of atomic and molecular spectra by Camarda and 
Georgopulos (1983) and by Mukamel et al (1984). Some recent and fascinating work 
by Bohigas and Giannoni (1983) has shown that the eigenvalue spectra of the quantum 
counterparts of non-integrable classically chaotic systems show many of the features 
associated with the GOE described earlier. 

The earliest calculations of the averaged eigenvalue density ( A E D )  for the GOE 

when N+co are to be found in the texts by Porter (1965) and Mehta (1967) and 
usually rely either on elaborate moment expansions or on the properties of the Hermite 
polynomials and oscillator wavefunctions which arise naturally from the many integra- 
tions against a Gaussian weight which occur in the GOE. However, a radically different 
method was presented by Edwards and Jones (1976), (referred to hereafter as EJ),  for 
calculating the AED of the GOE this new technique allowed an extension of existing 
results to the case of a GOE in which each rratrix element is allowed to have a finite 
non-zero mean. The methods used by these latter authors rely on the so-called replica 
method first used by Edwards (1970) in the study of polymer physics. EJ predicted 
that under certain circumstances an isolated eigenvalue would appear outside the 
Wigner semicircular band; this result was confirmed by Jones et a1 (1978) using 
completely different methods based on techniques used to describe localized excitation 
modes in an impure lattice. The work on ensembles with a zero mean has been extended 
by Edwards and Warner (1980) to Hermitian matrices. More recently Jones and Dhesi 
(1990) have used the replica method to study the spectrum of the random sign ensemble, 
first studied by Wigner (1955,1957) and then confirmed the Wigner conjecture (1958), 
that any ensemble of matrices whose elements are described by any reasonably well 
behaved probability density function, would yield the Wigner semicircle as N + a. 

There has also been interest in the behaviour of the AED when N is large but finite. 
Bronk (1964) studied the band tailing which occurred in the AED of a GOE near the 
edges of the Wigner band when N was large but finite. Since then there have been a 
number of papers which addressed the problem of calculating the corrections to the 
Wigner semicircle which are of order 1 /  N. Work by Takano and Takano (1984) uses 
a direct graphical technique; that by Verbaarschot et a1 (1984) uses a moment calcula- 
tion and an important paper by Verbaarschot and Zirnbauer (1984), (referred to 
hereafter as vz), casts the whole problem into the language of a 93 field theory. vz 
produced an explicit expression for the AED near the Wigner band edge and also 
calculate the 1/N corrections to Wigner’s result inside the band. Their results are at 
variance with those of Takano and Takano (1984). 

In this paper we revert to the replica method and assumption of replica symmetry 
made by EJ. In section 2 we outline the EJ replication method for calculating the AED 

of a large real symmetric random matrix. In section 3 we set up a diagrammatic 
expansion and a perturbation theory which will allow us in section 4 to calculate the 
corrections both of order 1 /  N and of order 1 /  N 2  to the Wigner semicircle. Our results 
to 0(1/N) will be shown to agree with those of vz rather than those of Takano and 
Takano (1984); the results for the corrections to the semicircle which are of order 
1/N2 are new. Both sets of corrections are non-vanishing and convergent only inside 
the Wigner semicircle and away from its band edges: further comments on this are 
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made in section 5 .  In  section 5 we show how a self-consistency condition imposed on 
our formalism can be used to describe the behaviour of the A E D  near the band edge 
and to provide a reasonable description of the rest of the A E D  when N is large (but 
finite). Our final results describing the band edges are identical with those of vz, 
although they are derived in a very different fashion, and show the expected non- 
analyticity in N and scaling behaviour at the band edges. We believe that our calculation 
of the A E D  near the band edge is significantly simpler than that published in previous 
work by both Bronk (1984) and vz. Finally, in section 6 we compare our analytical 
calculations with some numerical simulations on random matrices and  (as an extreme 
case) with the exact result known for N = 2. 

2. The replica technique 

In this section we outline the method developed by EJ for calculating the AED of a 
real symmetric N X  N matrix J with eigenvalues { J , } .  The density v ( A )  of such 
eigenvalues, chosen as normalized to unity, is given by the expression 

V ( A )  = N - '  C 8 ( ~  - J , ) .  (2.1) 

If we use the result that det(lA - J) = Il ( A  - J , )  and give A the usual infinitesimal 

imaginary part, -is, then (2.1) can be written as 
1 a 

v(A)=---Im-lndet(lA -J).  
NT a h  

The method developed by EJ uses the result that 
l n x = l i m ( y )  x " - 1  

,I-0 
(2.3) 

in order to write (2.2) as 
2 a .  1 
NT d h  n - O n  

v ( A )  = -- Im - hm - (det-''2(lA - J)" - 1 j ,  (2.4) 

The determinant is now parametrized as a multiple Fresnel integral of the form ( e'rr '1 n dx, exp(  -i 1 x,(lA - J),Jx, . (2.5) 

We now substitute (2.5) into (2.4) and assume that this latter result holds for integer 
values of n and may then be continued to n = 0. We thus obtain the basic result that 

) det-' '(lh - J) = -p 
--x I 1.1 

The integration is now over the N n  variables {xP} where the indices i and a range 
from 1 to N and from 1 to n respectively; the limit n + O  is to be taken at the end of 
the calculations. 

The averaged density of eigenvalues p (  A ) of an  ensemble of real symmetric matrices, 
from which a typical matrix element J,, has a probability density function ( P D F )  P ( J , ~ ) ,  
is then obtained by calculating 

p i A ) = {  iJ!/})  nP('!/) dJ;, (2.7) 
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3. A diagrammatic expansion for p(A)  in the COE 

We consider an N x N real symmetric matrix J; such a matrix is a member of the GOE 

if its matrix elements { Jij} are described by the following probability density function 
(see, e.g., Porter 1965) 

exp-(J$/2u2)  

exp - ( J$/4u2)  

m 

G 

f o r i Z j  

for i = j .  

For convenience, and by convention, we write u2= J2 /N,  where J2 is a number of 
order unity. 

An expression for the AED is then straightforwardly obtained by substituting the 
PDF given by (3.1) into (2.7) and carrying out the Gaussian integrals over the {Ju}: the 
result is that 

2 a 
p ( h )  = -- Im - lim - 

NT ah n - o n  -‘x I ,oI  

It will prove convenient to rearrange the terms in the exponent by writing 

; [?x1x;]’-f [f (x1)2]’+ n*B c XsxpXPxp 
i , j  

whence (3.2) becomes 

in 

(3.2) 

(3.3) 

This expression is very similar to equation (3.3) of EJ and hence may be handled 
in the fashion described there: since we shall ultimately be considering the case where 
N is large but n +0, we first seek the terms in the exponent which are of order Nn. 
The second term which is the exponent of (3.3), contains such a term, but it was argued 
in EJ that the third term in the exponent (3.3) (i.e. the term containing Z,,,) has zero 
mean but a square which is of order n. A careful diagrammatic analysis by Edwards 
and Warner (1980) confirms that in the limit N +  CO and n + 0 the term with a # p 
gives a contribution which is of order n l  (rather than O ( n N ) )  and so in the limit 
N + CO may be neglected. Thus the AED, po(h  1, in this limit N + 03 is obtained by 
evaluating 

2 a 1 elxi4 Nn +OC 
p o ( A  ) = -- Im - lim - 

NT ah n - o n { ( p )  !dxp 

x exp [ -; ( + ih ( x P )’ + J‘ (4 ( x? )’) ’)I - I } .  
N (3.4) 
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It is shown in Jones and Dhesi (1990) that if we make the assumption of replica 
symmetry by replacing each of the n variables {x;}, a = 1 . . . n, by a single variable xi 
then (3.4) becomes 

2 d 
po( h ) = - - Im - lim !- [ (5) vn H - 1 ] 

NT ah n-On 

where 
+X 

H = { dx, exp [ -ih xf (T  x ? ) ~ ] .  
--3c I , N  

(3.5) 

This latter integral is most easily evaluated by introducing polar coordinates in the 
N-dimensional space of the {x,} whence a straightforward saddle point integration 
and use of the basic idenity (2.3) gives 

for lh I > 25. 

This latter is, of course, the well known Wigner semicircle for the AED and holds when 
N + m .  

Thus we see that the first two terms in the exponent of (3.3) yield the N .+ CO limit 
for p ( h )  which is the Wigner semicircle (3.7). Our aim is to use (3.3) to develop the 
systematic corrections to p o ( h )  to 0 ( 1 / N )  and O( 1/ N2) and compare our calculations 
to O( 1/ N )  with those of other authors. We shall see that there are problems with such 
an expansion. Loosely, we shall construct an expansion of (3.3) by expanding out the 
final exponential in a series in ( J 2 / N )  X u , ,  . . . (since we have already argued that 
this latter term does not contribute in the limit N + CO). 

Our starting point is to use the auxiliary field (or Hubbard-Stratanovitch) identity 
(see, e.g., Sherrington 1971) in the form used by EJ, i.e. 

We use this in (3.3) to obtain the expression 

where 
+U2 

I = J n dxp exp 
-x 1.a 

(3.10) 
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and the series in this last expression is simply the expansion of the third exponential 
in (3.3). 

For convenience we write I=X.kr=o Z i k ) ,  where I ‘ k ’  is the contribution to (3.10) 
from the term in ( - J 2 /  N ) k .  At this stage we make the assumption of replica symmetry 
which (following our earlier remarks and the arguments in EJ )  consists of replacing 
sa  by the variable s which we assume independent of a. 

Clearly 

1 I ( ” =  n dxp exp - i A  1 (1 +s“)(xP)’ ltX --5 I,U [ 1.0 

is easily evaluated and has the value 

[ i h ( l + s ‘ )  = ] ‘ I 2  

which simply becomes 

[ ih (:+ s) ]  Nn’2 

under the assumption of replica symmetry. 
We regard (3.10) as providing a perturbation expansion for I which may be 

evaluated by integrating (or ‘averaging’) successive terms of the series against the 
(complex) Gaussian exponential. The averaged eigenvalue spectrum can be calculated 
by substituting a suitable approximation for I back into (3.9); in this latter expansion 
we shall be dividing by n, taking the limit as n + O  and then using the basic identity 
(2.3) to produce a non-zero contribution to p ( A )  when n + 0. It is then clear that in 
every order of the perturbation series (3.10) we must retain the term which is linear 
in n. Higher powers of n will yield no contribution to p ( A ) .  Direct calculation will 
demonstrate this point explicitly. Keeping track of the higher-order terms in (3.10) is 
plainly tedious so we use a diagrammatic technique to aid the calculation. We represent 
the vertex 

1 xpxp;xfx,p 
a + P  

1.1 

by the diagram 

The first order contribution to I ,  Iil’, can thus be represented as 

(3.11) 

where the brackets, { }x ,  denote the average against the Gaussian weight in (3.10). 
Since the vertex contains the restriction that a # p, the usual rules of integration 

against a Gaussian yield a non-zero contribution to (3.10) only when i=j. This we 
represent by joining the ‘legs’ labelled ip and jp.  There is only one way of doing this, 
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i.e. we say that the symmetry factor, S, of the resulting graph is 1. The resulting integral 
is then 

+r 

fl dx:(xp)2(x$)2 exp[ - iA  1 (1 + S)(X:)~] 
-= 1.Y h. y 

1 1 
= [ i A ( ;'1 s ) ] '%I/' [ 2i A ( 1 + s ) ] [ 2i A ( 1 + s ) ] 

we thus may write 

(3.12) 

(3.13) 

We identify a single continuous line resulting from the contraction of two sets of 
indices with a propagator T(s, A )  defined by 

1 
2iA( 1 + s ) '  

r(S, A )  =-= 

The normalization factor (7r/iA(l + s ) ) , " " ~ ,  is simply the value of I"' .  Thus I"'.. 
- I 'o 'J2(  n2 - n)T2(  s, A ) and is nominally of order No.  

The next term of the expansion, I"' ,  can be represented as 

(3.14) 

There are three distinct types of contribution to (3.14). Consider the set of contractions 
which leads to a diagram of the form 

There are four distinct ways of contracting so as to form such a diagram, i.e. the 
symmetry factor of (3.15) is 4. The contraction sets i = 1, j = k, a = y, p = S but 
maintains the constraints a # p and y # 6. If the summations are performed, we 
see that (3.15) is of order N 2 ( n 2 - n )  and gives to I"' a contribution of order 
~ ' ( n ' -  n ) .  

Equation (3.14) also contains contractions which lead to a diagram of the form 

(3.16) 

This also has a symmetry factor of 4. 
The contraction sets i = 1,l = j  (twice) and k = i ;  also a = y, S = p, with the constraint 

that a # p and 6 # y. Performing the summations, we see that (3.16) is of order 
N ( n ' -  n )  and gives to I"' a contribution of order N - ' ( n ' -  n), i.e. lower by a factor 
N than the contribution from (3.15). It is easily seen that an unlinked diagram such as 
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will give to (3.14) a contribution whose n-dependence is of order ( n 2 -  n)’. In the light 
of our previous remarks, such a term is of order n 2  as n + 0 and makes no contribution 
to p ( A )  and so may be omitted. This result is general and holds to all orders in 
perturbation theory. 

Thus for small n we have 
( n ’ - n )  4.1! 7 2 ( 0 )  

N 
I ( ~ ) = - ( - J * ) ~ Z ( ~ ) ( ~ * -  n)r4(s, A ) + -  ( - J - )  z r4(s, A ) .  (3 .17 )  

4.1! 
2! 2! 

A similar explicit calculation for the third-order term, ZI3’, in I shows that the 
contributions of order N o ( n 2 -  n )  and N - ’ ( n ’ -  n )  are 

where the numerical factors post multiplying each square bracket are the symmetry 
factors for the graphs within the bracket. From this we see that 

r6(s, A ) .  (3.19) 4’ ’ 2 !  4’21 2 3 ( 0 )  ( n 2 - n )  1‘3’ = - ( - J 2 ) 3 Z ( o ) ( n 2 - n ) P ‘ ( ~ ,  A)+--(-] ) I 
3! 3! N 

The general result giving the contribution to I ‘ k ’  is established in the same way: 

Again we perform the contractions as before and retain terms in Ilk’ of order 
No( n 2  - 2 n )  and N - ’ (  n 2  - n); this gives 

. . .+. . .  s-1. (3 .21)  

Each ofthe symmetry factors So and S - ,  has the value 4”-’(k- I ) !  (cf (3 .17 )  and (3.19) 
for k = 2 and k = 3 respectively) and there are ( k  - 1) diagrams of order N - ’ ( n ’  - n )  
each of which makes an identical contribution. 

1 
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From this we see that 

( k - l ) !  
I ( k l =  4k-1 - (- J2)kZ 'o ' (  n2 - n)T2" ( s ,  A ) 

k! 

(k  - I ) !  ( n ' - n )  
( k  - 1 ) (  -J ')kZ'o'  - r2k(s ,  A )  (3.22) 

+ 4 k - 1 7  N 

where, anticipating the final result, we have omitted the contribution of terms which 
are proportional to higher powers of ( n ' -  n )  and ( N - ' ) .  

Finally, we obtain the result that 

3 4 4' 43 
I = I ( ' ) {  1 + n [ J'r' -2 ( J 2 r 2 ) ' + -  ( J 1 r 2 ) 3  -- ( J 2 r ' ) 4 + .  . . 

3 4 

422 4'3 4 444 
(J'T2)'+- ( J 2 r 2 ) 3 - -  ( J  r ) +- ( J 2 T 2 ) 5 + .  . . 

3 4 5 

Again, only terms in N o n  and N - ' n  have been retained; the series can be summed 
in closed form and its value is I = I"'[ 1 + n P ]  where 

N (3.24) 

Up to terms linear in n, we may write I = I"' exp( nP) .  Under the assumption of replica 
symmetry, this may be substituted back into (3.9) to give 

The basic identity (2.3) is now used once again to reconstruct the logarithm, and we 
finally obtain 

x l - y d s  exp(  -Ng(s ,  h ) + f ( s ,  A)+z h(s ,  A )  11 
where 

A2s2 1 
g(s, A )  =?+-In i (  1 + s) 

4J 2 

(3.26) 

(3.27a) 

(3.27b) 

and 

Equations (3.26), (3.27a), (3.27b) and ( 3 . 2 7 ~ )  are the basic results from which we shall 
derive the corrections to the Wigner semicircle of orders N- '  and N - 2 .  



5586 G S Dhesi and R C Jones 

4. Calculation of p(A)  to order N - ’  and N - 2  

We now show that (3.26) will yield an expression for p ( A )  to O ( N - 2 )  away from the 
band edges ( A  = +23) by constructing an asymptotic expansion for the integral in 
(3.26) in powers of N - ’ .  We rewrite (3.26) as 

p(A)=-lImd{lnA NT a A  exp(-+lnA)+ W N ( ~ ) }  (4.1) 

where 

W , ( I ) = l n [ S _ d s e x p ( - N g ( s , A ) + f ( s , A ) + ~ h ( s , A )  )] . (4.2) 

In appendix A, we show that for large N, a saddle point evaluation of the integral of 
the form E N  = jc eNG(s) d s  yields the approximate result that 

(4.3) 

where S is determined by the saddle point condition [aG(s)/as],,, = 0. 
We write 

G = -g(s, A 1 + ( 1/ N)f(s, A 1 + ( I /  N 2 )  h (s, A ) (4.4) 

and use (4.3) and (4.2) to determine an expansion of p ( A )  in powers of N-I.  
Let us denote by so the saddle point associated with g(s, A )  and which is defined 

by (ag/as),,,, = 0. The presence of the terms in f(s, A )  and h(s ,  A )  will cause a shift 
in the saddle point of G from so to S where, to order N - ’ ,  we can use Taylor’s theorem 
to write 

In order to determine the requisite approximation to W N ( A )  and hence p ( A ) ,  we 
replace S in (4.3) by the approximate expression given in (4.5) and then use definition 
(4.4) of G in order to expand out (4.3) in powers of N - I .  The calculation is lengthy 
and given in appendix B where it is shown that 

(4.6) 

For convenience of notation, we have not written the explicit dependence on A the 
functionsf, g and h in (4.6). 

From the definition, ( 3 . 2 7 ~ )  it is easy to see that g(s, A )  has conjugate saddle points 
at f{[-1*i[(4J2/A2)-1]”2} and it is argued in EJ that the contour chosen for the 
saddle point integration may only be deformed to pass through one of these saddle 
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points and  that the lower saddle point leads to a physically reasonable positive A E D  

p ( A ) .  Thus following EJ we choose 

Substituting (4.6) into (4.1) finally yields 

p ( A )  =Pn(A)   PI(^) + P ~ ( A  1 + O W 3 )  
where 

2 a 
NT ah 

p , ( h )  = -- Im - (In A -f In g " ( s , ) + f ( s o ) )  

2 a i  1 
P ~ A )  = -- Im -( - h ( s o )  +z Q(sn)) NT ah N 

(4.8) 

(4.9u) 

(4.9b) 

(4.9c) 

(4.9d) 

Equations (4.8) and (4.9) give the required expansion of p ( A )  in powers of N - ' .  
It should be  emphasized that although the diagrammatic calculations in section 3 yield 
the argument of the exponential in (3.26) to order N - ' ,  the analysis of this section 
shows that this will give an  expansion of p ( h )  which is correct to order N-*. However 
because of convergence problems associated with the series (3.23) when s = so and A 
is close to *2J, we should not expect this method to yield sensible corrections to p o ( h )  
near the edges of the semicircular band of eigenvalues at lh 1 = 25. Thus we expect that 
for large but finite N, (4.8) will yield a good asymptotic approximation to the AED 
only for A *  < 4J2, i.e. inside the semicircular band of eigenvalues. In section 5 we shall 
consider the shape of the A E D  p ( A )  near /AI  = 2J when N is large but finite. 

We now explicitly evaluate p ( A ) .  The contributions p o ( h )  is obtained from (3.27u), 
( 4 . 9 ~ )  and (4.7) and gives the result 

2 
po( A = - - Im - - ( A  + i m  ) 1. 

NT [ 4:' 
It will prove useful to define a Green function Y o ( h )  associated with p o ( A )  by the 
relation 

% , ( A ) = A ( A + i m )  2J 

so that formally p O ( A ) =  I / T  Im Yn(A). From these we see that 

(4.10) 

(4.11) 
lA/>2J 

i.e. in the limit N + E, we once again have the Wigner semicircular band of eigenvalues, 
normalized so that p o ( A  ) dA = 1 .  
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The first-order correction to p ( A )  (i.e. the correction of order N-I) is now obtained 
from (4.2b), (3.2701, (3.27b) and (4.7). We define a first-order correction % , ( A )  to the 
Green function %o(A)  by the relation. 

1 2 a 
T NT ah 

pl(A) = - Im %‘(A) = -- Im - (In A - 4  In g”( so) +f(so)) (4.12) 

Explicit calculation of (4.12) shows that 

(4.13) 

and we see straightforwardly from this, that 

1 
(4.14) 

I A l >  25. 

Thus to order N-’ the total averaged eigenvalue spectrum is given by 

P ( A  1 = Po( A 1 + Pl(A 1 
- (4J2 - A 2 ) ’ l 2  1 +- ( N (A2-4J2) 

1 [ 2vJ2 
(4.15) 

We comment first on this result: it is easily verified that jTi: pl(A) dA =0, so that to 
this order of approximation the spectrum remains correctly normalized to unity-the 
integrated contributions from the isolated delta functions at each band edge exactly 
cancelling part of the density function which diverges as -(2J- A)-’/’ near the upper 
band edge. We have already noted that we do not expect such a perturbation calculation 
to converge near the band edges. Although our result for p , ( A )  is not in itself new, 
the method of calculation is novel and it is of interest because two recently published 
calculations of pl(  A )  disagree with each other. All existing calculations predict the 
presence of a single eigenvalue at the top and bottom end of the Wigner semicircular 
band, however recent work by Takano and Takano (1984) based on earlier work by 
Takano er a1 (1983) which uses a direct graphical technique, predicts that the contribu- 
tion to pl(A), additional to the delta functions at the band edges, should be - ( A 2 -  
JZ)/2rNJ2(4A2 - A’)’/’ rather than the contribution -1/2.rrN(4J2 - A2)’”  which we 
have found. However Verbaarschot er a1 (1984), using a moment calculation, and 
Verbaarschot and Zirnbauer (1984) (vz) by casting the problem as a 4~~ field theory, 
both find a result which is in complete agreement with our own. 

The second-order correction, of order N-2, must be obtained from ( 4 . 9 ~ )  and 
(4.9d). Some lengthy algebra shows that we may write p 2 ( A )  = T-’ Im % 2 ( A )  where 
%&(A) is a second-order correction to the Green function %o(A)  and is given by 

J2A 5 iJ2 
(4J2-A2)+4 (4J2-A2)3/2 

1 A i -- 
2 (4J2-2A2)-? 

(4.16) 
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The appropriate correction to the A E D  is then 

1 
4 N -  

p z ( A ) = y  (6(A + 2 J ) + 6 ( A  - 2 5 ) )  

(4.17) 

This result is new. Once more we see that (4.17) displays the expected divergences 
when I A l =  25, as did the first-order correction. However, it is easily verified that (6.17) 
is not correctly normalized. This is again unsurprising since we have no reason to 
expect that an expansion in powers of N-'  of a function, which, near I A l =  25, is not 
analytic in N, should preserve the correct normalization properties when the integrals 
are dominated by the divergences at the band edges. Our final result is that to order 
N - 2 ,  the averaged eigenvalue spectrum, $ ( A ) ,  is 

$0 1 = po(h  1 + p ,  ( A  1 + P A  A 1 
1 J 2  

- - - - ( 4 J 2 - A 2 ) ' I 2 [  - 2 i rJ2  
1 + i (  l+L)  N (A2-4J2) 

J4A2 I 1 5 J4 +-- 
N 2  2 (A2-4J2) '+N'5  (A2-4J2)3 

+- 1 + -  (S(A + 2 J ) + 6 ( A  - 2 J ) ) .  
:N( k) (4.18) 

This is the result we have sought to calculate. In section 6 we shall compare approxima- 
tions discussed here with the results of numerical simulations of certain random 
matrices. It should be noted that our perturbative scheme yields non-zero corrections 
to p o ( A )  only inside the Wigner semicircle band. 

5. A self-consistent calculation of p ( h )  and the band edge problem 

We have seen in section 4 that attempts to calculate p ( A )  in powers of N-'  using the 
perturbation expansion developed here, must diverge at the band edges-but these are 
precisely the places where we expect the AED to be small, even for finite N. The problem 
here is subtle and one is remined of the difficulties encountered in critical phenomena 
where naive expansions in the bare coupling constant of the problem always diverge 
at the critical point itself. The vanishing of p ( A )  at J A l  = 2 J  as N+co is rather similar 
to such problems of critical phenomena: in these latter problems it is necessary to 
rescale at the critical point and in the same spirit, we shall attempt to describe the 
band edges by using a scaling procedure and an 'effective action' to describe the 
problem. In doing so we shall be led to a self-consistency problem which will yield 
an approximate (and finite) expression for p (  A )  which gives a reasonable description 
of the A E D  for large finite N for all A .  

We now cast our problem into a form very similar to that of a problem in statistical 
mechanics or field theory (see, for example, Amit (1978) or Ramond (1981)). The 
averaged eigenvalue density is first formally written as 

- r  

J ds. p ( A )  =-- Im - In e4"3*' L 

NT a A  
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The saddle point of the integrand at s = s, is defined by the condition 

and the function A(s, A )  is chosen so that the expression 

2 a 
p(~)=----~m-Ine~"c' 

NT a h  

yields the correct A E D  to order N - '  i.e. it gives the approximation of ( 4 . 1 5 ) .  By 
comparison with (4.9~2) and (4.96) we see that we must choose 

N 
2 

A(s, A )  = --ln A - Ng(s,  A)+ln A +f(s, A )  -4 In (5.3) 

where g(s, A )  and f(s, A )  are defined by (3.27~2) and (3.276) respectively. 
In a field theoretical context, A(s ,  A )  would be called the effective action to order 

N - '  and its saddle point sc is known as the classical solution of this effective action 
to order N - ' .  The saddle point condition is 

and the prime indicates a partial derivative with respect to s. From the definitions 
(3.27~2) and (3.276) respectively we may verify thatf'(s, A )  =$g"'(s, A)/g"(s, A )  so that 
the saddle point condition becomes 

Using the definition of g( s, A ) we see straightforwardly that 

-- A 1 ( A / J  - ( - A S , / J ) ) - ~  
l - ( A / J - ( - A s , / J ) ) - '  s c -  

This equation cannot of course be solved for s, in a simple closed form for arbitrary 
values of the ratio A /  J. However when N + CO, we readily see that the solution of (5.6) 
tends to the value so given in equation (4.7). 

Now an attempt to solve (5.6) iteratively will certainly yield s, = so+ (terms of order 
N - ' )  and this latter correction of order 1/N will yield corrections to the semicircle 
in a self-consistent manner. Within the spirit of an effective action field theory and by 
analogy with (4.7) and (4.10) (in which we show that 9&o(A) = - ( A / J 2 ) s 0 )  we solve 
(5 .6)  for s, and then define a self-consistently determined propagator % ( A )  by the 
relation % ( A )  = - ( A / J 2 ) s C .  We note that when N - , c o ,  our previous remarks imply 
that %(A) tends to %,,(A) .  

Using this ansatz we see that (5 .6)  can be written as 

1 [ A / J * -  % ( A ) ] - 3  
' ( A ) - J 2 [ ( A / J 2 ) -  % ( A ) ]  J 2 - [ ( A / J 2 ) -  % ( A ) ] - 2  (5.7) 

We may regard (5.7) as a self-consistency condition which determines the propagator 
% ( A ) .  From it, we may calculate an averaged eigenvalue density p ( A )  by the relation 

(5.8) p ( A )  = ( l / . ? r )  Im % ( A ) .  
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This is our basic expression which determines i j (  A )  and in section 6 we shall compare 
the results obtained from (5.7) with those given by numerical simulation of a random 
matrix ensemble. It should be noted that with J 2  = 1, (5.7) has exactly the same form 
as equation (3.23) of vz who derive their self-consistency condition by treating the 
band edge problem as a one loop correction to a d3 field theory. 

The shape of the spectrum near the band edge can now be derived using arguments 
closely parallel to those given by vz. Close to the upper band edge at A = 25 we may 
write A /  J = 2 + 6, where 6 is small. Equation (4.5) shows that the saddle point is shifted 
from so to  s, where s,- so is of order N- '  and so has the value - f  at  the upper band 
edge (see (4.7)). In the same spirit, near the upper band edge we may write - ( A / J ) s c  = 
1 + p ,  where p is small. When this ansatz is substituted with (5.6) it yields the result that 

1 
p 2  - 6 (  1 + p )  = 

2 N [ p  - ; p 2  -;a2 - a (  1 - p ) ]  (5.9) 

which is identical to the self-consistency problem obtained by vz in their equation 
(3.25). The remainder of our calculations closely follows the work of these authors. 
We define scaled variables p and 8 which are to be independent of N, by the relations 
p s ( 2 N ) - p ,  with cy and  /3 both positive. Since we seek the behaviour 
of p ( A )  close to the band edge when N is very large we must rewrite (5.9) in terms 
of the scaled variables p and 5; by considering (5.9) for N very large we find that 
(Y = /3 /2  = f so that in this limit we have p = p ( 2 N ) p 3  and s= 6 ( 2 N ) - 2 ' 3 .  When N is 
large and  8<< 1, the self-consistency condition (5.9) then reduces to 

j j 2 -  $= (p)-'. (5.10) 

( 2 N ) - "  and 6 

This cubic equation determines p(8) and has the approximate solution 

(5.11) 

When 8=0, we choose the root of (5.10) for which p (0 )=e2r r "3  and  [dp/dd]g=o= + e-2rrif3 , It is easily verified that the remaining two roots lead either to a vanishing or 
to a negative AED at the band edge. The A E D  near the band edge is then determined 
by writing 

- 

(5.12) 
6 

A = 2 J + 2 J -  

Thus 

= - , m [ l + s ] .  1 
T J  

Use of (5.11) and  the approximate solution for ij(8) immediately shows that 

(5.13) 

(5.14) 

which agrees precisely with the result of vz. 
It is interesting to note that for the particular case N = 2 ,  and J 2  = 0.5, (5.14) yields 

p ( A  = 2 J )  = 0.246 as compared with the exact result (Porter and Rosenzweig (1960), 
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see also section 6) of p(A = 2J)  = 0.137. For such small values of N we should not, of 
course, expect good numerical agreement, but expression (5.14) which is clearly 
non-analytic in N shows quite explicitly that any attempt to determine the A E D  in 
inverse powers of N must fail at the band edges precisely because of this non-analytic 
behaviour. 

These problems have been encountered before by Zeigler (1982) who sought to 
calculate the density of states of a disordered electronic system with n orbitals per 
site: when n+o0 a semicircular band is again found. Attempts to calculate the 
asymptotic corrections (in inverse powers of n )  to this semicircle using perturbation 
theory give sensible non-zero corrections inside the semicircular band, divergence at 
the band edge, and no correction outside the band. Close to the band edges however, 
a sophisticated field theoretical calculation shows a scaling behaviour which is non- 
analytic in n for a hypercubic lattice of dimension d(<2)  when n is large. Indeed, 
Ziegler’s density function behaves as n-’l3 for a system in which d = 0. This agreement 
is most satisfactory since our whole calculational technique uses ‘functions’ {x:} which 
do not depend on any parameter, i.e. we are in effect working with a form of field 
theory in zero dimensions. 

The behaviour of the eigenvalue spectrum near the band edges seems first to have 
been described by Bronk (1964) who gives an explicit form for the density function 
near the band edge for an ensemble of complex Hermitian matrices, but who does not 
quote such an expression for the Gaussian orthogonal ensemble. However, we note 
that the density function (5.14) decays to zero when s is of order unity. The number 
of eigenvalues outside the semicircular band is then obtained by estimating the value 
of E N jy, p(A) dh. It is easy to see from (5.14) that E - N ( N - ’ / 3 ) ( N - 2 ’ 3 ) ,  i.e. E 
is a constant independent of N itself. This is in accord with Bronk’s calculation which 
shows that for both real symmetric and Hermitian ensembles of matrices, the number 
of eigenvalues in the tail of the density function, outside the band edge, is independent 
of the size N of the matrix. 

6. Some numerical results 

In this section we compare the closed form approximations given in section 4 and 
section 5 for the AED of a Gaussian orthogonal ensemble of N x N matrices with the 
results produced by numerical simulation of these ensembles. For a given N we have 
diagonalized a large sample of matrices and calculated an A E D  in the form of a 
histogram for the case J2 = 0.5 (for convenience). We have included all eigenvalues 
between A = 12.5. In figure 1 we show the A E D  produced by diagonalizing a sample 
of 250 matrices for the case N = 100 (see Jones and Dhesi 1990) and it is easily seen, 
as a check, that the A E D  of such an ensemble is well described by the Wigner semicircle 
(3.7). In the case N = 2 it has been shown by Porter and Rosenzweig (1960) that the 
A E D  can be calulated exactly; when J2 = 0.5 their result has the form 

1 
p ( A ) = -  e-h2(e-h’+J;f A erf(A)). 

N = 2  

In figure 2 we compare the exact result (6.1) with the simulations for a sample of size 
1.5 x 10’ and again with the Wigner semicircle. This simply provides another check on 
the accuracy of the numerical simulation and clearly shows that the Wigner semicircle 



Asymptotic corrections to the Wigner spectrum 5593 

r, 
2 5  - 2 C  - 1 5  - 1 3  - 0 5  

1 5  

\ yigner semicirc ie 

8 2  Y 
h 0 5  1 0  ’ 5  2 0  2 5  

A 
Figure 1. N = 100. The diagram compares the Wigner semicircle with the numerical 
simulations shown on  the histogram (sample size = 250). 

E x o c t  A E C  ( N - 2 1  

- 2 5  - 2 0  -15 -1  2 - 3 5  3 - 9 5  1 0  1 5  2 0  2 5  
h 

Figure 2. N = 2. The diagram compares the exact analytical result for the .AED with the 
Wigner semicircle and  the numerical simulations shown on the histogram (sample size = 
150 000). 

does not well describe the A E D  of an ensemble of small matrices: the semicircle clearly 
gives too large an  A E D  near A = 0 but then vanishes for I A l >  a, whereas the true AED 

has a small but finite tail which extends to infinity in both directions. Similar features 
are readily observable for N = 3 , 5  and 10 although we have not reproduced the relevant 
data in this section. Figures 3, 4, 5 and 6 contain the numerical A E D  for N = 2, 3,  5 
and 10 respectively and  compare them with the approximation schemes developed in 
sections 4 and 5 .  In section 4 we developed an  expansion for p ( A )  in inverse powers 
of N and the resulting approximation as far as terms in N - 2  is given by the expression 
for $ ( A )  in (4.18). We have pointed out that $ ( A )  diverges at the Wigner band edges 
( A (  = 8 where such an  expansion cannot be expected to converge. The self-consistent 
approximation P ( A ) ,  developed in section 5, is expected to give a better overall 
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I ,  

- 2 5  -2'0 - 1 ' 5 1  - 1 ' 0  - 0 ' 5  b 3 ' 5  1 ' 0  11'5 2 ' 0  2 5  

i h i 
Figure 3. N = 2. The diagram compares the self-consistent theory, p ( A ) ,  with the perturba- 
tive result ; ( A )  and the numerical simulations shown on the histogram (sample size= 
150 000). 

1 
I 1  

-; 5 - 2 ' 0  -1 '5  - l ' C  - 0 ' 5  j 3'5 1 ' 0  I 1 '5  2'0 2 ' 5  
h 

Figure 4. N = 3. The diagram compares the self-consistent theory, p ( A ) ,  with the penurba- 
tive result ; ( A )  and the numerical simulations shown on the histogram (sample size= 
150 000). 

description of the AED. It is obtained by solving (5 .7)  numerically (for a given value 
of A )  for its real and imaginary parts and then using ( 5 . 8 )  to calculate the self-consistent 
approximations p ( A ) .  On figures 3, 4, 5 and 6 we display, for N = 2, 3, 5 and 10, both 
the self-consistent approximation p (  A ) and the perturbative approximation $ ( A )  (shorn 
of both delta functions). Some general points may be noted. In general the perturbative 
approximation, $ ( A )  lies closer to the numerical A E D  near to A =0,  where it still 
nevertheless underestimates the A E D  by a small quantity which decreases as N increases. 
By comparison the self-consistent approximation p ( A )  always lies above $ ( A )  close 
to A = 0. This is consistent with our earlier remarks that $ ( A )  is expected to be a good 
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Figure 6. N = 10. The diagram compares the self-consistent theory, p ' ( A  ), with the perturba- 
tive result ; ( A )  a n d  the numerical simulations shown on the histogram (sample s ize= 
30 000). 

approximation to the A E D  only near the centre of the band of eigenvalues. However 
close to the edges of the Wigner band at IAI =a, $ ( A )  diverges negatively and is 
strictly zero for / A [ =  a. 

In this region the self-consistent calculation p (  A ) plainly gives a better description 
of the behaviour of the A E D  which is free of all divergences. This approximation, p ( A ) ,  
clearly exhibits a tail of states which extends outside the Wigner band edges but which 
is finite in extent-whereas the numerical A E D  has a finite tail for all A and  does not 
cut off anywhere. We see again that as N increases, the points where p ( A )  vanishes 
become ever closer to the Wigner band edges, whilst near A = 0 both approximations 
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approach the numerical AED. Although we have not reproduced the data here, it may 
be seen that when N = 20 ,  p(A), ; ( A )  and the Wigner AED are virtually indistinguish- 
able. We should not of course expect precise numerical agreement between the his- 
tograms and our approximations p ( A )  and ; ( A )  for very small values of N ;  it is 
interesting to note that even when for N = 2  the self-consistent calculation p ( A ) ,  
overestimates the exact AED by only 5% at A = 0, whilst at A = 0 the perturbative result, 
; (A) ,  underestimates the exact value by about 3.9%. From the histograms and detailed 
study of the values of p ( O ) ; ( O ) ,  we find that when N = 3  the overestimate in p ( 0 )  is 
about 2.7% and the underestimate in ;(O) is about 2.5%. For N = 10, the corresponding 
figures are 2.2% and 0.9%. Near the upper band edge of the Wigner semicircle at 
A =a, ;(a) diverges negatively and the start of this divergence is visible on figures 
3 to 6. However the self-consistent result for p ( & )  can been in all cases to be close 
to the AED generated by numerical simulation. However quantitative agreement between 
p ( A )  and the AED is not good for values of A greater than about 1.5 where the tail of 
states (described in section 6) predicted by p ( A )  does not extend to sufficiently large 
values of A. 

7. Summary 

We have shown how the replica method, in the form developed by Edwards and Jones 
(1976), can be used to develop a form of perturbation theory which for the Gaussian 
orthogonal ensemble will lead to corrections to the Wigner semicircular AED which 
are of order 1/N and 1/ N 2 .  This latter result is new. However when we compare our 
calculation of the 1/  N corrections to the semicircle with previously published conflict- 
ing calculations, we find that our results are in complete agreement with those of 
Verbaarschot and Zirnbauer (1984), who used a different calculational framework. We 
have also shown how our version of the replica symmetric n + 0 method yields a very 
straightforward method of calculating the average eigenvalue density in a self-consistent 
fashion and which is finite everywhere and gives a good overall picture of the AED of 
an ensemble in which N is finite. This latter calculation permits a very straightforward 
method for calculating the scaling behaviour of the AED near the Wigner band edges 
where perturbation theory fails. Again our results agree with those of vz. We have 
presented some numerical data which compares our two approximation schemes for 
the AED with numerically simulated histrograms of Gaussian orthogonal ensembles of 
different sized matrices. 

The problems associated with using the replica method and of assuming replica 
symmetry are by now well known: de Almeida and Thouless (1978) have shown the 
need to break the replica symmetry to attempt a sensible description of a spin glass 
and their view is supported by the work of Parisi (1979) which proposes a more 
sophisticated symmetry breaking scheme for the spin glass. In an important recent 
paper, Verbaarschot and Zirnbauer (1985) have shown that the replica method with 
replica symmetry fails to give the correct result for the two point correlation function 
of the Gaussian unitary ensemble; however these authors show that the introduction 
of mixed bosonic and fermionic variables will yield the correct non-perturbative form 
for the two point function. 

Work is now in progress in which we hope to shed some light on the reasons for 
the failure of the simple replica symmetric techniques for the two point correction 
function in the Gaussian orthogonal ensemble. 
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Appendix A 

Consider the integral 

E N  = I, eNG(s) d s. 

The integrand has a saddle point at s = S where G'(S) = 0. Then defining the quantity 

1 1 
2 !  3 !  

- U * ~ - ( S - S ) ~ G " ( S ) + - ( S - S ) ~ G " ' ( S ) + .  . . 

we have 

The process of reversion of the series (A .2 )  is lengthy but straightforward and gives 

d s  
du ('4.4) -- -ff + 2 p u + 3 y u 2 + .  . . 

where 
2 p = -  B , = - a % - -  1 

2A2 2 (4A' :} 
and 

G'"'(S) c=-. GI"( S )  
2 !  3 !  4 !  

B=- 

The integrals implied by (A .3 )  and (A .4 )  are easily performed and give 

G"( S )  A = -  

Appendix B 

In ( A . 5 )  we write 

1 1 
N N -  

G = - g ( s ,  A)+--f(s, A ) + y h ( s , A ) .  
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For convenience, the A dependence of g, f and h will not be written explicitly. Now 
g( s )  has a saddle point at s = so where g‘(so) = 0; it is easily seen that G(s) has a 
saddle point at s = S where G’(so) = 0 and 

We use (A.5),  (B. l )  and (B.2) to determine the asymptotic dependence of E N  on N. 
Taylor’s theorem is used to expand G(s) and its derivatives about s = so and we 

thereby generate a series of corrections to the standard saddle point result in a series 
of inverse powers of N. 

Performing these manipulations yields 

Thus with W, ( A )  In E N  we finally have 

This is the result used in (4.6) which we we wished to establish. 
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